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Abstract: The work of PechukasJ[ Chem. Phys1976 64, 1515-1521] on predicting transtion structure
symmetry from reactant and product symmetries is extended to degenerate reactions. Pechukas showed that
the group of the transition structure in a one-step nondegenerate reaction must be one of the Pechukas groups
common to reactant and product. It is now shown that for a one-step degenerate reaction the transition structure
symmetry must either be that of one of the Pechukas groups as predicted for a nondegenerate reaction or a
group constructed from one of them by adding “extra” symmetry operations to double its order. Several
examples are given to clarify these rules, and a table is presented to aid in their application.

I. Introduction different, Noursehas published a result for the Longuet-Higgins
) . groups of degenerate reactions analogous to what will be
Do the symmetries of reactant and product impose any hresented here. Some comparisons of the two approaches are
restriction on the possible symmetry of a transition structure  section IV where the question of relative orientation of

(TS) connecting them? A recent paper by Minyagives a reactant and product is also discussed.
useful set of references to the early history of this problem. We

shall not repeat these, but only note a key paper by Stanton||. Two Examples
and Mclvet in 1975. Pechukdsfollowed with an elegant
analysis of the problem and a rule for predicting possible TS
symmetries in nondegenerate concerted reactions, i.e., one-ste
reactions where reactant and product are chemically distinct.
We extend Pechukas’ work to degenerate concerted reactions
i.e., one-step reactions in which reactant and product differ only
by the interchange of identical atorhsBoth Pechukasand
Stanton and Mclv@rdiscussed degenerate reactions. They knew
that the TS in these reactions may have extra symmetry
operations not shared by the entire reaction path and that thes
extra operations interchange reactant and product paths. Wha
is new here is the derivation of a rule restricting possible TS potential surface.

symmetry groups in degenerate .reactlons. Additional assumptions needed to derive the TS symmetry
These rules for one-step reactions apply equally well to the rje5 are fortunately few. First, the conditions of the Murrell
individual steps in multistep processes. They can also be applied igier theorer? are assumed so that two and only two steepest
to the steps in the probably rather common situation in which yaogcents paths come down from the TS, one to reactant and
the path up from reactant goes to a TS, then falls to a secondgne o product. Second, all second derivatives of the potential
TS from which two paths fall to two products, either degenerate gnergy with respect to nuclear Cartesian coordinates are assumed
or nondegenerate. continuous in the region of the two steepest descents paths. Thus
Two examples in section Il show the application of these regions containing surface crossings must be avoided. Third,
rules. Proof of the rule for degenerate reactions follows in it js assumed that the energy gradient with respect to nuclear
section lll. Section V gives further examples in more elaborate coordinates, which determines forces on the atoms at each point
situations. on the potential surface, has the same symmetry as does the
The work here is based on the use of Pechukas groups. Therenuclear framework. For example, at a point on thgOH
has also been a parallel development using Longuet-Higgins potential surface where both OH bonds are equally stretched,
groups € permutation-inversion groups molecular symmetry  the restoring force on both must be equal. Potential surfaces
groups)>~10 In particular, although the two derivations are quite constructed from symmetry-broken wave functions may not
satisfy these conditions, and they are to be treated with caution.

II.1. Assumptions. The two examples in sections II.3 and
.4 will show how to predict TS symmetry without following
e derivations upon which the methods are based. This can
be done correctly if one keeps in mind the assumptions
underlying these derivations. Beneath the special assumptions
here is the usual supposition that the molecule is being treated
by a method that produces a potential energy surface giving
molecular energy as a function of nuclear positions. That is,
the Born-Oppenheimer separation of electronic and nuclear
oordinate¥ is assumed. An impossibly rigorous treatment
ould not make this approximation, and there would be no
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He /Hs molecules) rotational angles of the_rigio_l molecule. An oriented
Hy / Hy c/ automer of cyclobutene is shown in Figure 1.
\02/01 """ He \Cz/ \Hs I1.3. Nondegenerate Case. The general procedure, il-
n conrotatory lustrated below for the ring opening of cyclobutene, for
Cs fing opening predicting possible TS symmetries in a one-step nondegenerate
HB/ \04"'%0 /CS\ /He reaction from a particular reactant automer to a particular
o He 04\ product automer is the following.
Hio 1. Choose particular orientations of particular reactant and
Coy Cay product automers.
E E 2. Determine the Pechukas grouBg of the reactant and
(14)(2,3)(5,10)(6,9)(7.8) C (1.4)(2,3)(5,10)(6,9)(7.8) C» Gp of the product automers.
(1.4)(23)(5.9)(6,10)(7,8) Oy (1.4)(2.3)(5,10)(6,9)(7.8) Oy 3. Find the Pechukas operations common to reactant and
(5,6)(9,10) G’ oy product automers. These form a grdbg the largest common

Figure 1. The ring opening of cyclobutene to plargcisbutadiene. subgroup ofGr andGp. Let the subgroups oBo be Gy, G,
Automer numbering and Pechukas symmetry groups are shown. -y Gk
4. Possible symmetries for the TS in a one-step reaction from
The predicted geometry of stable molecules and transition the chosen oriented reactant automer to the chosen oriented
structures, of course, varies with the level of calculation. It is product automer ar&rs = Go, Gy, Gy, ..., Or Gk.
not rare for a TS at one level to become a minimum at another. 5. Repeat in the same way with all other orientations of the
However, as Stanton and Mclvguoint out, the TS symmetry  product automer to give further possible symmetries for the TS
rules here apply to all potential surfaces, not just the most nearly from the chosen reactant automer to the chosen product automer.
exact. Since only relative reactant and product orientations matter, it
I1.2. Pechukas Groups. Pechukas carried out his analysis IS not necessary to consider other reactant orientations. All this
using modified point symmetry groups that we shall call is not as onerous as it may appear since most additional oriented
“Pechukas groups”. These will also be used in the extension product automers contribute no new TS possibilities. Pechukas
of his work to degenerate reactions. To construct such a group,himself did not include this step. It is often not needed, but
start with the usual point symmetry group. For example, We shall see cases where it is.
cyclobutene shown in Figure 1 h&s, point group symmetry Return now to the ring opening of cyclobutenestais1,3-
with the identity, a 2-fold rotation axis, and two reflection butadiene shown with oriented automers of reactant and product
planes. We shall interpret these symmetry operations in thein Figure 1. For simplicity we assume the product to be planar,
active sense and let them operate on the molecule itself rathercontrary to the calculations of Bruelet, Lee, and Schaéfer.
than on the coordinate system. Thus the point symmetry Consequences of the actual nonplanar geometry will be con-
elements interchange various identical atoms (ignoring the atomsidered in section V.
numbering) in cyclobutene. The point symmetry groups are identical for reactant and
To obtain the operations in the Pechukas group, append toProduct, but the Pechukas groups are not. Their largest common
the point symmetry operation the permutation of identical nuclei subgroup is{E, (1,4)(2,3)(5,10)(6,9)(7,8;}, and the only
that returns all numbered atoms in the molecule to their original Subgroup of this i§E}. Therefore, the Pechukas group of the
positions. The cyclic notation for permutations will be used, TS between these oriented automers, if the process is a one-
thus ¢, j, k, ..., v, W) means atoni is replaced by atorjy j by step reaction, must be one of the two.
k, ...,v by w, andw by i. Single-membered cycles such &s ( Next, all possible orientations of the product automer must
in whichi is replaced by itself, i.e., is unchanged, are omitted. be considered. In Figure 1, the product can be rotated by 180
For example, reflection of cyclobutene in the plane of the page about thex or y axis, or by any angle about tizeaxis, to give
by ¢,/ interchanges atoms 5 with 6 and 9 with 10 in the reactant. the result we already have.
Therefore, followings,' by the permutation (5,6)(9,10) returns All other product orientations have only the operator E in
the reactant to its original configuration, and the operation of common with the reactant, and hence prediceymmetry for
the Pechukas group correspondingbin the point symmetry the TS.
group is (5,6)(9,1®),'. Thus for the automers in Figure 1, the TS can have the
Let R be any point symmetry operation and P be the Pechukas symmetry grogig} or{E, (1,4)(2,3)(5,10)(6,9)(7,8)-
permutation of identical nuclei that cancels the effect of R. The Cz}. This treatment cannot predict which of these two sym-
Pechukas groupPR} and the point symmetry grouiR} of a metries the TS will have, but it does say with certainty that the
molecule are isomorphic with the obvious correspondence Symmetry can be no other.
PR<R. If one prefers to think in terms of the more familiar point
In the following it will be convenient to define the “structure” ~ Symmetry groups, the permutation operations may now be
of a molecule by the!8 — 6 (or 3N — 5 for linear molecules) ~ dropped, and one can say the symmetry of the TS is e@ther
internal coordinates. Ifi is the number of identical atoms of = {E, G} or C; = {E}. However, doing so does discard
typei, there ardT; nj! ways of forming this structure that differ ~ information that may be useful. That is, more is known than
only in the interchange of identical atoms. These may be that if the TS hasC; symmetry it has a 2-fold axis. Rotation
distinguished by numbering the atoms, and we shall use Balabararound that axis must interchange atoms 1 and 4, 2 and 3, ...,
and Farcasiu’$ term “automer” for these numbered structures. 7 and 8. These predictions are consistent with MP2/6-31G*
That is, each structure gives riselipn;! automers. Structures ~ calculations that find a TS witll, symmetry*®
and a}utomers can be oriented in space by fixing the t_hree (14) Breulet, J. Lee, T. J.. Schaefer, H. F_.JllAm. Chem. S0d984
coordinates of the center of mass and the three (or two for linear 1og g250-6253.

(15) Baldwin, J. E.; Reddy, V. P.; Schaad, L. J.; Hess, B. AJJAm.
(13) Balaban, A.; Farcasiu, . Am. Chem. S0d967, 89, 1958-1960. Chem. Soc1988 110, 8555-8556.
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A similar analysis for the product as in Figure 1, but with H Hio Hs
and Hy interchanged, predicts either@ or a Cs transition a Cq (o3
structure. In the same way it is shown that the product of Figure C“ [l
1 with Hs and H interchanged can be reached in a one-step H / \ H . / \ H
reaction only through &; transition structure. Nl X7 N e

It is seen that these symmetry predictions are of a different He™" “H, Hig™™ THe
nature than those from the Woodwatkoffmann rulest® In C,, C.y
the Woodware-Hoffmann treatment, symmetries are assumed E E
for reactant, product, and all geometries, including the TS, along (2,4)(5,7)(6,9)(8,10) C, (2,3)(5,10)(6,8)(7.9) C»
the reaction path. A correlation between reactant and product (2.4)(5,9)(6.7)(8.10) O, (2.3)(5,8)(6,107.9) G,
orbitals is then constructed, and from this it is predicted whether 56)7.9) G, (568,100,
the reaction will be allowed (as for the conrotatory ring opening
above) or forbidden (the disrotatory ring opening). The
Pechukas analysis starts with the symmetry of reactant and
product only and predicts the possible symmetry of the TS. More
precisely, it states which symmetries of the nuclear framework
are not possible for the TS, leaving all others as possibilities. It
says nothing about relative activation energies for various © Hy Ho d " H

1

reactant or product automers. c',./ C3

I.4. Degenerate Case.The general procedure is as follows. \ L9671 \

1. Follow steps 15 as in the nondegenerate case. Suppose Co—Crx e ,,Cz’c‘éo(
this gives the possibilitie§Sts = Go, G1, G, ..., Gk for the He | 3\ He™ | \
Pechukas group of the TS, assuming the reaction nondegenerate. Hs Hio Hs Hr

2. SupposeSe!, Ge?, ..., Go™ are groups of twice the order  Figure 2. Feist rearrangement of autoneof methylenecyclopropane
of Go that containGo as a subgroup3:t, G412, ...,G# are groups  to automerb. Structurex andd show that the “extra” operation of
of twice the order of5; with G; as a subgroup; ... .. G, G2, the Pechukas symmetry group of the transition structure does inter-
..., G are groups twice the order & with Gy as a subgroup. change reactant and product. See text for the definition. of

3. Then possible Pechukas symmetry groups of the TS are

Hg

any ofGo, Gy, Go, ..., Gk Gol, Ge?, ..., Go% Gil, G12 ..., Gif: These results may be summarized in two rules, remembering

______ ‘G, G2, ..., G, that all relative orientations of reactant and product automers
4. Further, the “extra” Pechukas operationSigt... G that must be considered. _

are not common tGg andGp have the property that they turn Rule 1. The Pechukas group of the TS in a one-step

the reactant (product) automer into the product (reactant) nondegenerate reaction is either the largest common subgroup

automer. of the reactant and product Pechukas groups, or any subgroup
The Feist rearrangeménbf methylenecyclopropane by the of that. )

Doering and Roth pivot mechanidfprovides such an example. Rule 2. The Pechukas group of the TS in a one-step

One possible set of automers for reactant and product is showndegenerate reaction is one of the groups from Rule 1 for
in Figure 2. Since the reaction is degenerate, reactant andnondegenerate reacqons, or any Pechukas group obtained from
product must have the same point symmetry gresp,n this any of these by adding extra symmetry elements to double the
case. However, the two Pechukas groups have only the elemen@foup order. o )

E in common. There are no permutation operations to drop  1able 1 is arranged to simplify these TS symmetry predic-
here so the largest common Pechukas subgroup corresponds tHons. See footnote for use of the table.

the point symmetry groufC; = {E}. This is one possible
symmetry for the TS, but since the reaction is degenerate other
possibilities are any group that is double the ordetCofi.e.

any group of order 2) and containirgy as a subgroup (all We first review, with additional comment on some points,
groups do). ThusC,, Ci, and Cs as well asC; are possible the main steps in Pechukas’ proof of Rule 1 since these are
point symmetry groups for the TS. No other orientation of the necessary to the extension to Rule 2.

[ll. Derivation of the TS Symmetry Rule for Degenerate
Reactions

product gives additional symmetry possibilities. Consider arN-atom molecule in 3-dimensional space with
A Cssymmetry is found by MP2/6-31G* calculations for this  atomic Cartesian coordinat@s= (X1, Xz, X3; X4, X5, Xg; .-, XaN)

TS, in agreement with these predictiofig® The “extra” ¢ wherex, Xp, X3 refer to atom 1, etc. Le¥(x) be the potential

operation of the TS passes through &d the pivot GHsHg surface (i.e., the surface of total energy in a fixed-nuclear

methylene and is associated with the permutation (3,4)(7,10)- calculation) in 3 + 1 dimensions. Then the steepest-descents
(8,9). As seenin Figure &(c, andd), the resulting Pechukas lines (=gradient lines) are given by
operation does turn reactant into product, as required.

(16) Woodward, R. B.; Hoffmann, RThe Conseration of Orbital dxi P

aviax;

SymmetryVerlag Chemie/Academic Press: Weinheim, 1970; pp&8. ds [VV|’ 1=12,.
(17) Feist, F.Chem. Ber1893 26, 747-764.
(18) Doering, W. v. E.; Roth, H. Dletrahedron197Q 26, 2825-2835. h
(19) Skancke, A.; Schaad, L. J.; Hess, B. A.JJAm. Chem. So&988 where
110, 5315-5316.
(20) Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma, K.
J. Am. Chem. S0d991, 113 3183-3184. It is mentioned in footnote 3 of |[VV| =
this paper that our MP2/6-31G* TS collapses to trimethylenemethane on
geometry optimization in a CASSCF calculation. This is certainly an
important observation, but does not affect our comments above that apply
specifically to the MP2/6-31G* potential surface. in the denominator of eq 1 normalizes the step size so that
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Table 1. Allowed Point Symmetry Groups for Transition

Structure’

Cu none Cy, Cs, Ci

Cz C [C4, S, Ca, Con, DZ]

Cs C1[Cap, Car]

Cii C1 [Czh]

Ca: C1[Cs, Ss, Cayy Can, D3]

Ca: Cu C [Cs, S, Da, Cap, C4I/]

Si Cy, Co, [ D2g, Can]

Ca: Ci, Cy, Cs[D2n, Dog Cay)

Con: Cy, Gy, Cs, G, [D2n, Car]

Do: Cy, C2[Dan, D2y, D4

Cs: C1[Csh, Cs,, Ds|

Ce: Cy, Gy, C3[Cen, Ceyy Del

S Cy, Ci, C3[Coén, Dad]

Ca: Cy, Cs, C3[Céy, Dan, Dad]

Can: Cy, Cs, C3[Cen, Dar]

Da: Cy, Cy, C3[Dan, Dag, Dg]

Cr Ci [none]

Cg: Cy, Cy, C4 [Dg]

S Cy1, Cp, C4[Dad]

Dan:  Cy, Cy, Cs, G, Con, Cayy D2 [Dar]

Doy Cu Cp, Cs, Sy, D2, Co, [Dar]

Da: Cu, Cp, Cs, D2 [Dan, Dag, D

Cam:  C1,Cy Cs, G, Con, Cay &4 [Dar]

CAL,: C]_, Cz, Cs, Czy, C4 [D4h, D4d]

Csh: C1, Cs, Cs[Dsi)

Cs,: Cy, Cs, Cs5[Dsh, Dsd]

Ds: Cu, Cp, Cs [Dsh, Dsq]

Cen:  C1, Cz Cs, G, Cs, Con, Can, Ss, Co [Der]

Ce.: Cy, Cy, G, C3, Ca, Cay, Cs [Déh, Ded]

Dan: Cy, Cy, Cs, C3, Cyy, Cayy Can, D3 [Den

Dsy. Cy, Cy, Cs, G, C3, Can, D3, Csy, S5 [Den]

De: C1,Cy, C3, D2, D3, Cs [Dén, Ded]

T: Cl, Cz, C3, Dz [Td, Th, O]

Dan:  Cy, Cy, G, Cs, D2, Con, Cavy Sy, Ca, Cauy Cany Day D2g, Don [Dan]

Dag: Cy, Cy, Cs, D2, Ca,, Cy, Cay, Da, S [Dar]

Ds:  Cy, Gy, Cy, Do, Cg, Da[Degn]

D5h: Cl, Cz, CS, CZL‘, C5, D5, C5U, C5h [none]

D5di Cl, Cz, CS, Ci, C2h, C5, D5, C5L‘ [none]

Den:  Cy, Cy, Cs, G, Cg, D2, Caon, Cay, D3, Can, Cay, S5, Co, Don,
Ds, Dsg, Dan, Ce., Cen [NONE]

Deu: Ci, Gy, G5, C3, Dy, Ca, &y, D3, Cay, Cs, D2g, Ds, Cs, [NONE]

Ta: Cu Gy, G5, C3, &, Cay, Dy, Cay, Dag, T[Or]

Th: Ci, Co, Cs, Gi, Cs, D2, Can, Cau, S, Dan, T[On]

O: C]_, Cz, C3, Dz, C4, D3, D4, T [Oh]

Den: Gy, Cyo, G5, G, C4y Sy, Con, Coy, D2, Don, D2g, Da, Can, Caps
Cs, S, Ds, Dan, Dag[none]

On: Cy, Cy, G5, G, Cg, Dy, Con, Cay, Sy, Cy, D3, Cay, S5, Ca,
C4h, D4, Dde D2h, D3d, T, D4h, Td, Th, (@] [none]

|: Cl, Cz, Cg, Dz, C5, D3, D5, T [Ih]

In: Cy, Cy, G5, G, Cg, D2, Con, Cay, Gs, Cs,y,, D3, Don, Ds, Cs,,
T, D3g, Dsg, Th, | [nONE]

le,: Cl, Cz, CS, C3, C4, Czy, Cs, Ce, Cgp, C7, CS, C41)1 CSL‘!
C61/ [DOOh]

Don: Cy, Co, Cs, G, Cg, Gy, S, Con, Cay, D2, Cs, Cg, S5, Cay,

Can, D3, C7, Cg, S, Don, D2g, Da, Can, Cay, Ds, Cs,, Con,
Ceh, Céu, D3d, D3n, D,
Dad, Dan, Dsd, Dsh, Deh, Ded, Dan, Cw, [NONE]

aThe point symmetry grou@ corresponding to the largest common

Schaad and Hu

3N

dx
ds

2

=1 3)

As Pechukashas pointed out, gradient lines are useful here
because they lead to relations between the symmetries of the
critical points they connect. Whether or not the reacting
molecule actually moves along the gradient line is not directly
relevant to these symmetry questions.

Eq 1 is almost analogous to the equations for the steepest
path down a hill on the (approximately flat) earth where the
hill height zand thex andy directions all have units of length.
The element of path length includes all three variables and is
[(dX)?2 + (dy)?2 + (d23Y2. In eq 1 the variable analogous to
hill height has unit of energy instead of length as for the other
3N variables. Distance is therefore not defined in thi (8
1)-space, and the element of path length is

3N

ds=| (dx)?|*” (4)

in 3N rather than in (Bl + 1)-space.

Equation 1 is a set of 8 first-order differential equations
with independent variablgand dependent variablas ..., Xan,
but because of the additional constraint of eq 4 the usual Proof
of the uniqueness of solutions does not apply. However, if all
lines in eq 1 are divided by the last

dx,  aViox,
dXyy  OV/0Xgy

f;

OXgn_1  OV/OXgy 4 ¢
dXgy  OVIOXgy — NE

1=1 (5)
These 8l — 1 first-order differential equations determine the
3N — 1 dependent variableg;, ..., Xan—1 in terms of the
independenxsy, and hence determine a line ih&limensional
space.
If all
’(ﬂ\ PV (&\ Y ]
of; e OX0% | 9%/ 0% OXap |

ij=12 ., N-1
(6)

are continuous in a regidR of 3N-space, then eq 5 has a unique
solutior?! at all points in any closed rectangular regininterior

to R Consequently, the gradient lines iN-3pace determined
by eg 5 cannot cross in such &. These conditions are
sufficient, but not necessary, for the existence of unique

% (OVI0Xg)?

Pechukas group of reactant and product is shown before the colon.solutions. They appear weak enough to cover the cases of
These are arranged in increasing order for 49 common groups, includinginterest on potential surfaces, but they are slightly stronger (i.e.,

the 32 crystallographic point groups. All subgroups®that are in

the set of 49 groups are between the colon and left square bracket.
The square brackets contain groups with twice the ord& thiat have

G as a subgroup. For exampleP§ corresponds to the largest common

more restrictive) than the more usual Lipschitz conditi&till
weaker conditions are knowfAput even they are only sufficient,
not necessary.

subgroup of reactant and product in a nondegenerate reaction, then Since these gradient lines ilN&pace are projections of paths

possible symmetries for the TS abe or either of its subgroup&;
andC,. If the reaction is degenerate additional possibilities are groups
in the square bracket fd., i.e., D2y, D2g, D4, and those in the square
brackets for the subgrougs andC, i.e., C,, Cs, G, andCy, &, Cyy,

Can, D2. The notation “[none]” means no group with required properties

is in the set of 49 groups.

on the surface o¥ in (3N + 1)-space, the paths in KB+ 1)-

(21) Pennisi, L. L.Elements of Ordinary Differential Equationblolt,
Rinehart and Winston: New York, 1972; Appendix 2.

(22) Coddington, E. A.; Levinson, Nlheory of Ordinary Differential
Equations Krieger: Malabar, FL, 1987; p 49.
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TS to one of equal energy oy, but reactant and product at the
ends of these lines are not of equal energy in most nondegenerate
reactions. One might imagine rare cases where reactant and
product are accidentally isoenergetic in a nondegenerate reaction,
but the fact that R preserves angles and lengths and P
interchanges only identical atoms prevents PR from transforming
reactant into product in such a case. Thus for a nondegenerate
reaction, the TS can have no symmetry element additional to
those of the gradient line down to reactant. Exactly the same

B reasoning applies tgp, and leads to the conclusion that in a
A nondegenerate reaction symmetry is conserved along all points
Figure 3. Gradient path for a one-step=(concerted) mechanism. on a gradient line from reactant to product, excluding reactant

and product themselves but including the TS. Reactant and

space cannot cross except at crossings of their projections.product might have more symmetry than this gradient line, but
Conversely, sinc is a single-valued function ofy, ..., Xan, they cannot have less. Hence the TS can have only symmetry
the potential surface does not fold back on itself; and the lines operations that are shared by reactant and product, and hence
in 3N-space cannot cross unless those M {31)-space cross.  Rule 1 for nondegenerate reactions.
Thus there is a one-to-one correspondence between the crossings There are also gradient lines down to the TS from higher
of the paths in (Bl + 1)-space and of their projections ilN3  energies. Any symmetry along these lines will be brought to
space. the TS, but, since these gradient lines and those coming up to

The potential V. becomes infinite wherever two nuclei the TS from lower energies cannot be interconverted by any
coincide. Here gradient lines may cross, but such points are PR, they can add no symmetry elements to TS in addition to
not met along ordinary reaction paths. The right sides of eq 6 those already allowed by Rule 1.

will also become infinite at any point whet&/oxay vanishes, The degenerate reaction differs from the nondegenerate in
but this difficulty can be avoided by dividing eq 1 by some that in the former the two paths are isoenergetic and so might
line other than the last, except at critical pointsvofmaxima, be interchanged by some Pechukas operation. This might be

minima,.transition structures, etc.) where zan/am, an'd hen.ce imagined to occur by pathg, and gy each having certain

vV, vanish. For the moment we shall avoid consideration of Pechukas operations not common to the other. Such operations
cases where two potential surfaces cross leading to gradient linesf g, might turngp into g, while those ofgp turn g into gp. All

that may not have a continuous slope. Consequently, on thesymmetry operations af, andqy, would, of course, also belong
surfaces considered there is no crossing of gradient lines alongto the TS. It will be shown that this is not the case. Instead,

a reaction p_ath except at critical points. We assume _further ga and gp have identical Pechukas groups just as in the
that quadratic terms dominate the power series expansivh of nondegenerate case, and the extra symmetry operations of the
in the neighborhood of each transition structure so that the TS which interchange, and g, belong to it alone (or more
Murrell—Laidler result? holds, and hence only two gradient precisely, not to any downward gradient path from the TS).

lines descend from each TS. Suppose for a degenerate reaction
Let R be any rotation, including an improper rotation
(reflection, inversion, rotatory reflection), of the molecule in Go={Xy Xy ..s X} @)

3-dimensional space. Let P be a permutation of identical atoms.
The set{ PR} includes all operations in the Pechukas group of where X = PR;, is the Pechukas group gf, excluding its end
the molecule. Both R and P also correspond to transformationspoints A and TS which both have at least this much symmetry.
of a point in the Bl-dimensional molecular configuration space. Let
The following results from Pechukaand earlier papers will
be useful. Gs=Gy+tK={X, X5 .. X Yy, ..., Y (8)

1. The operations R and P transform a point on the potential
surfaceV to another of equal energy. This is apparent since R be the Pechukas group of the TS so that
is an orthogonal transformation and therefore preserves angles
and distances; P interchanges only identical atoms. K={Yy o, You} (©)

2. If g is a gradient line orV, so are g and Ry.

3. Gradient lines terminate on critical points, and, excluding
these termini, symmetry is conserved along gradient lines.

is the set, perhaps empty, of “extra” Pechukas symmetry
elements of the TS. Since these turn a gradient path down from

Pechukas’ Rule 1 now follows quickly. By continuity of the the TS into an isoenergetic path also starting at the TS and since

gradient lines and their derivatives, any symmetry of the line is Yj O Go, it must be that

also a symmetry of the critical points at its ends. Consequently -

any critical point must have at least all symmetry of all gradient Yia=% =12, m (10)
lines terminating on it. In particular, a TS must have at least
the symmetry of the two gradient lineg, leading down to
reactant A andq, to product B (Figure 3). Consider a Xd,=9q, i=12,..,n (11)
nondegenerate reaction, and suppose the TS has an extra element

of symmetry PR not possessed by the gradient ¢ipe Then Next suppose thab, is not the Pechukas group gf. Then it
PRga must be a gradient line, and it must terminate on the TS myst follow that at least for some; X

since PR is a symmetry element of the TS. Therefore, either

PRga = ga or PRja = Qv. The first is impossible since by X0, =0,

assumption PR is not a symmetry element of the entiredine

The second is impossible since PR must turn each point,on  and since X! is a member oG

while
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XXy =X 'd,
or
X9, = ap
which is contrary to the definition o&o. Hence
XiGp = Ay (12)

and Gy is the Pechukas group of botly and g..
In a similar way Y~ is a member ofGts, and it must be
that

Y, Mg, =ap (13)

since otherwise
Yj_lqa = qa
Y)Y, M, = 0,= Y{d,

which is contrary to eq 10. Hence™ belongs toK. Then
using eq 13

Yijilqaz Y0y
so that

Y, =0a (14)
and the “extra” operations iK do interchangey, and qp.

Next consider the products;X;, XYj, YjX;, and YY;. All
belong toG+s because of the closure property, and for the same
reason XX; belongs toGo. To show that XY € K, multiply
eq 10 by X and use eq 12

XY, = Xi0p = qp (15)

In the same way, multiplication of eq 12 by,Yand use of eq
10 shows also that;X; € K. Again, multiply eq 10 by Yand
use eq 14

YiYi0,= Y0, =0, (16)
to show that YY; € Go. In summary
(XjY;and Y,X; € K) and (XX;and YY; € Gp) (17)
Finally, multiply Grs on the right by Y

GreY; = GoYj + KY; = {X,Y, oy XY} V1Y ooy YY)

(18)

By the rearrangement theorem which says that multiplication
of all members of a group by any particular member gives back

the group in a perhaps rearranged order, each of the element

in this set is distinct and each is a membeiGat. By eq 17,
each member 06y is turned into a member df, and each
member ofK into a member ofGq by this postmultiplication
by Y;. Thusm = n, and any allowed group for the TS in a

degenerate reaction that contains symmetry operations that ar
not shared by reactant and product must be twice the order of
one of the groups allowed by Rule 1 and must contain that group

as a subgroup. Hence Rule 2 holds for transition structure
symmetries in one-step degenerate reactions.

e
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Since the set of all elements common to any two grd@ps
and G; (i.e., G1 N Gy) is itself easily shown to be a group,
Rule 1 can alternatively be stated: “The symmetry group of
the TS in a one-step nondegenerate reaction is one of the
subgroups common to the reactant and product Pechukas
groups.”

IV. Discussion

IV.1. The Problem of Rotation. Because the energy of a
molecule is unchanged by rotation or translation, each gradient
path in N-space has associated with it a 6-fold infinity of
equivalent paths. Along each of these, symmetry is preserved.
If symmetry elements are defined relative to the three Cartesian
axes of laboratory space (e.g., a 3-fold rotation aroundzthe
axis, or a reflection in they plane), then it is clear that the
symmetry elements may vary from one equivalent path to
another. Since the derivation of Rules 1 and 2 made use of the
symmetry conservation along a gradient path, to apply these
rules one must imagine the reaction carried out without sliding
from one equivalent path to another, that is, without overall
rotation or translation of the reacting molecule.

Holding the center of mass fixed in the laboratory space
prevents translations, but since the molecule is not rigid, it is
not always easy to see how to avoid rotation. The permutation
operators attached in the Pechukas group to the point symmetry
elements help to overcome this problem. As the molecule is
transformed from reactant to product, symmetry elements of
the reactant may disappear and new ones appear for the product.
It is necessary to know whether a particu@r axis (say) in
the product is the same as one in the reactant. For example, in
the conrotatory ring opening of cyclobutene in Figure 1, the
rotation of the two CH groups makes an overall rotation (i.e.,

a motion requiring an external torque) about an axis through
the G=C; and G—C,4 bonds. To cancel this, the entire
molecule must be rotated in the opposite direction. Thus the
oy plane of the reactant is different from that of the product;
but since the former permutes atoms 5 and 9 while the latter
permutes 5 and 10, the permutations of the Pechukas symmetry
elements make it clear that these two operations are different
even without considering overall rotation of the molecule.

However, these permutation operators alone are not always
sufficient, as theis—transisomerization of ethylene by rotation
about the C bond shows. Start with ethylene lying in the
Xy plane asa in Figure 4. If the GHsHg group is rotated
clockwise by 90 and the GH3H4 group counterclockwise by
90°, the rotations about the=€C bond cancel, and the resulting
Berry pseudorotatici gives the produdb in the xzplane shown
in Figure 4. There is a reflection plane in both reactant and
product that induces the permutation (3,4)(5,6), but they are
not the same plane. Thus the two Pechukas operations are not
identical. The largest common Pechukas group of reaetant
and producb in Figure 4, taking account of spatial orientation
of a, b, and all symmetry elements, igE, (3,4)(5,6 2,
(1,2)(3,5)(4,6%2y, (1,2)(3,6)(4,5€24 which is isomorphic with
the point grouD, containing (see Table 1) subgroupsand

%‘,2. These are possible TS symmetries. Doubling the order of

these gives (again, see Table 1) the additional possible sym-
metries: C— [Cz, Cs, Ci]; C— [C4, S, Co,y Con, Dz]; D, —

[D2n, D2g, D4]. Thus 12 point symmetry groups are possible
for the TS of this reaction. Note, however, that tBegroup
arises in two ways that correspond to different Pechukas
groups: first, as a subgroup of the largest common subgroup
of reactant and product Pechukas groups so that ffop€ration

(23) Berry, R. SJ. Chem. PhysL96Q 32, 933-938.
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4a y 4 ¢

E (12)3,6)(4,5) 1 E (1,2)(3.5(4,6)i
(GASHC Oy BAGHCay Oxy
(1,2)3 ,5)(4,6)C2y (3.4)(5.6)0xz (1.2)3,6)(4,5) Cay (3.4)(5.6)0y,
(1,2)3,6)(4,5C,, (1.2)3.5X4.6)Cy, (1,2)(3.50(4,6)C5, (1,2)(3.6)(4,5)0y;
4b z
y
Hs\ A
Ci=—=C, —»x
HV N H,
E (1,2)(3,5)(4,6) i
BAE6) Cay (.4X56) Oy
(1236 Cay <
(1,23.6)4,5Cy, (123.6X4.9)5y,

Figure 4. Pechukas groups for the rearrangement of the autanoérethylene to two orientation$ (andc) of the product automer.

must be one of the 2-fold rotations with associated atom see no way to be sure that a symmetry plane, for example, that

permutations in that group. Secor), may arise by doubling permutes certain atoms in the reactant and another that permutes
the common subgrou@;. In this case the atom permutations the same atoms in the product is actually the same plane and is
associated with the 2-fold rotation are not specified. Similar conserved along the reaction path. For examalandb in

remarks apply to th®; symmetry. Figure 4 both have some reflection plane that permutes no atoms
If instead the GHsHg group is rotated by 180while holding and another that exchanges atoms 3 and 4, and 5 and 6.
the GHsH4 group fixed, the isomerized product is in thg Similarly, they both have thre€, axes that cause the same

plane € Figure 4). The largest common Pechukas group of permutations in reactant and product. It might then be said that
this reactant and product{&, (3,4)(5,6F2, oxy: (3,4)(5,6px3 the Pechukas groups afandb have 6 elements (E, thre

which is isomorphic with the point groug,, containing axes and 2 reflection planes) in common. This is impossible
subgroupsC;, C,, andC.. From Table 1 additional possible since the set of all elements common to two groups forms a

TS symmetries areC; — [Cy, Cg, Ci]; C2 — [Cs, S, Cayy Con, subgroup of both, and hence its order must be an integer divisor
Dy]; Cs— [Cay, Canl; Cop — [D2ny Dag, Cayl. of the order of both groups, but 6 is not an integer divisor of 8.
The TS symmetry predictions given by orientatidnandc The example of Figure 4 is a degenerate reaction, but the

in Figure 4 differ in that the first allow®, while the second same problem can occur in nondegenerate cases. Replace H
allows C4,. This C4, possibility is excluded by the following  and H in this figure by Cl atoms, and consider the resulting
reasoning. The largest common Pechukas subgroamntic cis—transisomerization of 1,2-dichloroethylene. The resulting
is isomorphic withC,, and contains the operatier,. Should modified structures andb then have(E, (1,2)(3,5)(4,6F2}
the actual TS be of this symmetry or of symmetry gotten by as the largest common subgroup while modifeedndc have
doubling the order of this group (i.eDQan, D24, or Cs,), the {E, ox}.
symmetry operationy, must be preserved all along the gradient Since in Figure 4 one can go from to b by a Berry
path. Since this operation interchanges no atoms, the moleculepseudorotation, i.e., by vibration of the two halves of the
must remain planar. Inthe same way, the operation (3,4%5,6) molecule moving against each other with no external torque,
must also be preserved. This requires that atoms 5 and 6 movewhile ¢ can be reached from by rotating the right methylene
symmetrically with respect to theplane. They must therefore  group, which would require an external torque, we can exclude
meet on thex axis and pass through each other. Such infinite- the product orientatior in this case. In fact, any degenerate
energy paths are of no practical interest and so must be excludedreaction, except the interconversion of enantiomers, along a
It is true that aCy, TS structure is also possible for paitio b gradient path with no external force or torque must be
(Figure 4), but this occurs by doubling the common subgroup describable as a Berry pseudorotation. The case of enantiomer
C, so that the exact symmetry planes are not specified, andinterconversion is excluded since reactant and product, although
neither aCy, nor aD»y (Which does not arise fror@,, for this of equal energy, are distinguishable.
path) TS causes difficulties. It is further true that the extra TS symmetry alloweddig

It might seem more natural to attach the point symmetry shown to be impossible because it requires motion of atoms
elements to molecule-fixed rather than laboratory-fixed coor- through each other. However, we do not see, in general, any
dinates. After all, there is nothing to prevent the actual reacting way to choose a unique orientation of product, or even to
system from translating and rotating. The difficulty is that we recognize those orientations that cannot be reached without
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CsHgy— C;H, Cyy Hy

.

C4HoH o C, C HsHg

C3Hg— C,H,

C4HoHyo CyHsHg
G,
Figure 5. Sketch of the potential surface showing the ring opening of cyclobutene to gauche butadief®, Fhasition structure here is the
planars-cisbutadiene shown in Figure 1.

rotation of the system as a whole. The only safe procedure are less restrictive than those of the Pechukas group. Itis only

appears to be to choose some spatial orientation of reactant (osurprising that the difference is as small as it is with 15 possible

product) and then to examine all relative orientations of product TS symmetries predicted by the Longuet-Higgins group and 13

(or reactant). All distinct TS symmetry predictions from all by the Pechukas group.

orientations are then possible TS symmetries unless they can The Longuet-Higgins group avoids the troublesome problem

be excluded by further considerations. For the ethylene exampleof relative orientation of reactant and product. On the other

of Figure 4, we have found no further TS symmetries not hand, the Pechukas group is more selective and the isomorphism

allowed byproduct orientationts and c. with the familiar point group is more immediately obvious.
IV.2. Comparison with the Use of Longuet-Higgins

Groups. In 1963 Longuet-Higgir® introduced the group V. Further Examples

consisting of all “feasible” permutations in the molecule plus || of the examples below, like the two above, are uni-

all *feasible” inversions of permuted configurations. A *fea- molecular rearrangements. Multimolecular steps may also be

sible” permutation is one obtainable under the conditions of yeateqd with the additional complication of considering various
the experiment considered during the time of the experiment. rg|ative orientations of the reactant and of the product compo-
Longuet-Higgins called this group the “molecular symmetry pants3

group”, but we shall follow others including Balaban and V.1. The Ring Opening of Cyclobutene. We retum to the
Brocas®and use the name, “Longuet-Higgins group”. Although  cyciohutene ring opening discussed in section 11.3. This
this group was developed to understand the spectra of no”rigidproceeded from cyclobutene wit, symmetry to planaty,
molecules, it can be applied to rigid molecules as well where it ¢_cjspytadiene through s transition structure. However, the
and the point symmetry group are isomorphic. C,, butadiene is actually not an energy minimum, but rather a
‘Consider again the reacti@rto b in Figure 4. The Longuet-  ansition structure between two enantiomeric forms of gauche
Higgins symmetry operators for bothandb are butadiene, each wit,; symmetry. When the gradient along
the G—C4 bond lengthening, £-C, bond shortening, etc.,

E E* direction reaches a minimum, it meets a pair of downward
(3,4)(5,6) [(3,4)(5,6)]* gradients in an orthogonal direction (rotation of the terminal
(1,2)(3.5)(4,6) [(1,2)3.5)(4.,6)] methylene groups about the centraHC; bond) that lead to
(1,2)(3,6)(4,5) [(1,2)(3,6)(4,5)]* (19) the gauche products. These points on the potential surface are
sketched in Figure 5 where, for clarity, the scale is distorted.
This group is isomorphic to thB,, point group, and using Table None of this affects our previous prediction of the symmetry
1 as above this gives all the 13 possibilities for TS symmetry of the TS between cyclobutene asetisbutadiene since our
predicted by the Pechukas group above for orientatéoand reasoning required only that we consider a TS between, and

¢ and the two additional possibilitid34, and C4,. Since the higher in energy than, two points where all first derivatives
Longuet-Higgins group contains no information about spatial vanish, as they do at transition structures as well as at minima.
orientation of reactant or product, it predicts the same TS However, the question of whether this n€y, TS has proper
symmetries for the reactioato ¢ as fora andb. symmetry to mediate the reaction between the two gauche forms
Again, because of the lack of spatial information in the of butadiene should be considered. These gauche forms have
Longuet-Higgins group, it is not surprising that its predictions identical Pechukas groups which are isomorphi€io
(24) Longuet-Higgins, H. CMol. Phys. 1963 6, 445-460. The reaction is degenerate, and Table 1 shows the observed

(25) Balaban, A. T.; Brocas, J. Mol. Struct. (THEOCHEM).989 185 Cz, TS symmetry to be in the allowed list{, C;, Cs, C;, Ca,
139-153. Con, Ca, S, D4) Of possibilities.
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Hg Hy Hg 7 Dot ¢
N / N /,AH13 &8, ¢
Co=—=Cj4 Cp—=C1 72 + Il
/ \H / “Hg ,....El_.F.;: _____________ '|:6 Fy
H—Cs 6 Hg——C3 a2 fp e Fo-Np . F2
N\t N, T T [~
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E E 23.6C" (142)C5* (1,24)CsY
(2,63)C3” (1,24)Cy (1425
6,13)0 3 3
. (12,13)6 » . (6,13) 126G, (3.6)24C,! B.HEHC?
Figure 6. The hydrogen shift in 1,3-pentadiene. AABHC? BOUMC? BHINC,?
(1H23)C° (3.6)1.2)C° B.6X1.2C°
. . . . (180, (.60, (4),
Situations such as this where the gradient path from one TS 2365, B4 GO
falls to another TS are probably not uncommon. The gradient (1426385 GHU2485° BONIADSY
path for the Diels-Alder endo addition ofk-cisbutadiene to @so, 240, @40,
3.6)0, 1,402 3.6)0,2

cyclopropene has been followed at the STO-3G léwaid is
like Figure 5. The gauche butadiene flattens to the s@me

TS as in Figure 5 which then adds to cyclopropene to gie a a. The Pechukas operations underlined for the two orientaticsrsd

transition structure. . . c of the same product automer are those common with the Pechukas
The last part of the computed gradient path for the combina- gryp of the reactant automer

tion of silene and ethylene to form silacyclobutane is another coincide as irb. With this relative orientatiom andb share

6 o :
example?® Silene and ethylene first react to form a trans only the two underlined Pechukas operations E and (1,4)(3,6)-

diradical which then rises to @s TS. This in turn falls to a C2 From Table 1, nine possible symmetries for the TS are
C,, TS in the degenerate interchange of an enantiomeric pairthen Ci, Gy, Cq G 64 Su. Cay, Con, andD
1 (] 3] (K] ] ] v 1 .

of puckered silacyclobutene rings. In this example, the sym- However if the automer it Figure 7 is rotated around the
metry rules were a considerable practical aid in connecting the P—F, bond until F; and R are in theon plane ofa, ¢ is obtained

various staFlonary _pomts on the potential surface. The largest Pechukas group commoratandc then consists

It is a minor point of nomenclature that, if one follows & 4t the four operations underlined in the Pechukas group of
gradient path such as above down from the first to the second 54 is isomorphic with the point groupy,. This adds, using
TS, and then down to product, it might be said that the reaction Table 1, the three additional possibilitiBss, D2q, andCa, for
path has bifurcated to two products. It seems to us clearer toyhe TS symmetry. There is also an orientation of the product
say that the original gradient path reaches its minimum at the 5, ;iomer in which the PF, bond lies along the original £
second TS from which it begins to rise. At the second TS two axis and in which E-P—Fs is in the o, plane. This has a
other gradient paths go down to product. Pechukas group isomorphic with in common witha, but it

V.2. The [1,5]-Sigmatropic Hydrogen Shift in cis-1,3- adds no new possibilities for the TS symmetry.
Pentadiene. In 1982 Kwart and his colleagu€sproposed a Since the Berry pseudorotation mechanism andGheTS
Ca transition structure in the degenerate concerted hydrogengre already known, automer orientatiorin Figure 7 would
shift reaction shown in Figure 6. This TS was later shown by probably be one’s first choice. Of course, if the TS is known,
computation to hav€s symmetry instead® there is no point in predicting its possible symmetry. Our

It will be shown now that with the rules above, thg, TS purpose was to show that had the TS not been known, the
can be excluded without computation. Figure 6 lists the methods here would correctly have predicte@sastructure as
Pechukas groups of reactant and product in this reaction. Thea possibility. Although 37 of the 49 symmetries in Table 1 are
largest common subgroup is isomorphic with. No other rigorously eliminated in this case, 12 still remain. Further
relative orientation of reactant and product automers give techniques that eliminate six more possibilities, still leaviiag
additional symmetry; nor do any other pair of automers with a have been developed by BytautsTheir application requires
single hydrogen transferred from the methyl to the methylene ga little more effort than the methods here, and their results cannot
group. Table 1 shows that the only possibilities for the TS be summarized as in Table 1.
symmetry in this degenerate reaction ag Cp Cs (as V. 4. The Bond-Shift Rearrangement in Cycloocta-
calculated)Ci. Cy, is not a possibility. tetraene. By the methods above, Table 1 gives the 15

V.3. Rearrangement of Pk by Berry Pseudorotation. possibilities,Dan, D24, Can, Cayy Don, D4, S, Couy D2, Cop, Ca,
The rearrangement of the phosphorus pentahalides by theC,, C,, Ci, andCy, for TS symmetry in a one-step ring inversion
pseudorotation mechanism proposed by B&rity 1960 is an (1to 2 or 3 to 4, Figure 8) of cyclooctatetraene where reactant
interesting example where the obvious relative orientation of and product have identical Pechukas groups isomorphic with
automers does not give the correct symmetry prediction. D, In the same way, the largest Pechukas group common to
Suppose the automarof PF shown in Figure 7 is rearranged  reactant and product for a one-step bond-shift rearrangement
to automerb. It seems natural, if one imagines not knowing (1 or 2 to 3 or 4, Figure 8) is isomorphic witls,, and there are
the Berry mechanism, to align the two automers sodhaxes 11 possible TS symmetrie$y, D2g, Can, Couy Con, D2, Cy, Co,
C,, Ci, andC;. These do not include the planBg, structure
that might perhaps be expected.

In 1992 Hrovat and Bordéh published CASSCF results
demonstrating the three-step mechanism shown in Figure 8

230,? 12,2 1,26,

Figure 7. The Berry pseudorotation rearrangement of fRém automer

(26) Schaad, L. J.; Skancke, P. Bl. Phys. Chem1997 101, 7408-
7413.

(27) Kwart, H.; Brechbiel, M. W.; Acheson, R. M.; Ward, D. &.Am.
Chem. Soc1982 104,4671-4672.

(28) Hess, B. A, Jr.; Schaad, L.J.Am. Chem. S0d983 105 7185~
7186. (31) Bytautas, L. Ph.D. Dissertation, Vanderbilt University, Nashville,

(29) Rondan, N. G.; Houk, K. NTetrahedron Lett1984,2519-22. TN, 1996. To be published.

(30) Hess, B. A., Jr,; Schaad, L. J.; PancirJJAm. Chem. Sod.985 (32) Hrovat, D. A.; Borden, W. T. J. Am. Chem. So&992 114, 5879~
107, 149-154. 5881.
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Figure 8. Sketch of the potential surface showing the ring-inversion
(1to 2 or 3to 4) and the bond shiftl(or 2 to 3 or 4) automerization
of cyclooctatetraene as calculated by Hrovat and Boféen.
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the ridge along a gradient extremal as defined by Ruedefiberg
in his extensive study of the ring opening of cyclopropylidene
to allene. In this case, cyclooctatetraene will bypasssTah

the way to structures or 2. Consequently, what we have called

a three-step reaction for bond shifting by following the gradient
through three transition structures, might equally well be
considered a one-step reaction if transition structérasd 6

are avoided. This emphasizes Pechukas’ Bdimt gradient
lines are useful here not because the actual reaction must always
move along gradient, but because the symmetry conservation
along gradients imposes symmetry constraints on critical points
connected by gradients. The symmetry rules are therefore
helpful in mapping the potential surface whether the actual
reaction path follows gradient lines.

The mechanism calculated by Hrovat and Borden has been
strengthened by the spectroscopic observation of tBeir
transition structuré*35 They also give an estimate of 121
kcal/mol for the antiaromatic destabilization of planar cyclo-

where all structures are singlets. The first step is a ring inversion octatetrene. This is in fair agreement with the simpleck&l

betweenl and 2 or 3 and 4 with calculatedDyy, transition
structures5 and 6 as allowed above. Transition structures

and6 also have identical Pechukas groups, and Table 1 shows

Dgh to be an allowed symmetry for TBconnecting them. The

bond-shift reaction as followed along gradient paths is thus a

three-step process: up frobor 2to TS5, then up againto TS
7 and down to TS5, then down to the bond-shifted produ&s
and4.

However, the reacting molecule may not follow a gradient Sc

reaction patl¥? If the descending gradient line from goes

result, using a Dewar reference, of 15.7 kcal/R¢6T.
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