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Abstract: The work of Pechukas [J. Chem. Phys.1976, 64, 1515-1521] on predicting transtion structure
symmetry from reactant and product symmetries is extended to degenerate reactions. Pechukas showed that
the group of the transition structure in a one-step nondegenerate reaction must be one of the Pechukas groups
common to reactant and product. It is now shown that for a one-step degenerate reaction the transition structure
symmetry must either be that of one of the Pechukas groups as predicted for a nondegenerate reaction or a
group constructed from one of them by adding “extra” symmetry operations to double its order. Several
examples are given to clarify these rules, and a table is presented to aid in their application.

I. Introduction

Do the symmetries of reactant and product impose any
restriction on the possible symmetry of a transition structure
(TS) connecting them? A recent paper by Minyaev1 gives a
useful set of references to the early history of this problem. We
shall not repeat these, but only note a key paper by Stanton
and McIver2 in 1975. Pechukas3 followed with an elegant
analysis of the problem and a rule for predicting possible TS
symmetries in nondegenerate concerted reactions, i.e., one-step
reactions where reactant and product are chemically distinct.
We extend Pechukas’ work to degenerate concerted reactions,

i.e., one-step reactions in which reactant and product differ only
by the interchange of identical atoms.4 Both Pechukas3 and
Stanton and McIver2 discussed degenerate reactions. They knew
that the TS in these reactions may have extra symmetry
operations not shared by the entire reaction path and that these
extra operations interchange reactant and product paths. What
is new here is the derivation of a rule restricting possible TS
symmetry groups in degenerate reactions.
These rules for one-step reactions apply equally well to the

individual steps in multistep processes. They can also be applied
to the steps in the probably rather common situation in which
the path up from reactant goes to a TS, then falls to a second
TS from which two paths fall to two products, either degenerate
or nondegenerate.
Two examples in section II show the application of these

rules. Proof of the rule for degenerate reactions follows in
section III. Section V gives further examples in more elaborate
situations.
The work here is based on the use of Pechukas groups. There

has also been a parallel development using Longuet-Higgins
groups () permutation-inversion groups) molecular symmetry
groups).5-10 In particular, although the two derivations are quite

different, Nourse5 has published a result for the Longuet-Higgins
groups of degenerate reactions analogous to what will be
presented here. Some comparisons of the two approaches are
in section IV where the question of relative orientation of
reactant and product is also discussed.

II. Two Examples

II.1. Assumptions. The two examples in sections II.3 and
II.4 will show how to predict TS symmetry without following
the derivations upon which the methods are based. This can
be done correctly if one keeps in mind the assumptions
underlying these derivations. Beneath the special assumptions
here is the usual supposition that the molecule is being treated
by a method that produces a potential energy surface giving
molecular energy as a function of nuclear positions. That is,
the Born-Oppenheimer separation of electronic and nuclear
coordinates11 is assumed. An impossibly rigorous treatment
would not make this approximation, and there would be no
potential surface.
Additional assumptions needed to derive the TS symmetry

rules are fortunately few. First, the conditions of the Murrell-
Laidler theorem12 are assumed so that two and only two steepest
descents paths come down from the TS, one to reactant and
one to product. Second, all second derivatives of the potential
energy with respect to nuclear Cartesian coordinates are assumed
continuous in the region of the two steepest descents paths. Thus
regions containing surface crossings must be avoided. Third,
it is assumed that the energy gradient with respect to nuclear
coordinates, which determines forces on the atoms at each point
on the potential surface, has the same symmetry as does the
nuclear framework. For example, at a point on the H2O
potential surface where both OH bonds are equally stretched,
the restoring force on both must be equal. Potential surfaces
constructed from symmetry-broken wave functions may not
satisfy these conditions, and they are to be treated with caution.
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The predicted geometry of stable molecules and transition
structures, of course, varies with the level of calculation. It is
not rare for a TS at one level to become a minimum at another.
However, as Stanton and McIver2 point out, the TS symmetry
rules here apply to all potential surfaces, not just the most nearly
exact.
II.2. Pechukas Groups. Pechukas carried out his analysis

using modified point symmetry groups that we shall call
“Pechukas groups”. These will also be used in the extension
of his work to degenerate reactions. To construct such a group,
start with the usual point symmetry group. For example,
cyclobutene shown in Figure 1 hasC2V point group symmetry
with the identity, a 2-fold rotation axis, and two reflection
planes. We shall interpret these symmetry operations in the
active sense and let them operate on the molecule itself rather
than on the coordinate system. Thus the point symmetry
elements interchange various identical atoms (ignoring the atom
numbering) in cyclobutene.
To obtain the operations in the Pechukas group, append to

the point symmetry operation the permutation of identical nuclei
that returns all numbered atoms in the molecule to their original
positions. The cyclic notation for permutations will be used,
thus (i, j, k, ..., V, w) means atomi is replaced by atomj, j by
k, ..., V by w, andw by i. Single-membered cycles such as (i)
in which i is replaced by itself, i.e., is unchanged, are omitted.
For example, reflection of cyclobutene in the plane of the page
by σv′ interchanges atoms 5 with 6 and 9 with 10 in the reactant.
Therefore, followingσv′ by the permutation (5,6)(9,10) returns
the reactant to its original configuration, and the operation of
the Pechukas group corresponding toσv′ in the point symmetry
group is (5,6)(9,10)σv′.
Let R be any point symmetry operation and P be the

permutation of identical nuclei that cancels the effect of R. The
Pechukas group{PR} and the point symmetry group{R} of a
molecule are isomorphic with the obvious correspondence
PRTR.
In the following it will be convenient to define the “structure”

of a molecule by the 3N - 6 (or 3N - 5 for linear molecules)
internal coordinates. Ifni is the number of identical atoms of
type i, there areΠi ni! ways of forming this structure that differ
only in the interchange of identical atoms. These may be
distinguished by numbering the atoms, and we shall use Balaban
and Farcasiu’s13 term “automer” for these numbered structures.
That is, each structure gives rise toΠi ni! automers. Structures
and automers can be oriented in space by fixing the three
coordinates of the center of mass and the three (or two for linear

molecules) rotational angles of the rigid molecule. An oriented
automer of cyclobutene is shown in Figure 1.
II.3. Nondegenerate Case. The general procedure, il-

lustrated below for the ring opening of cyclobutene, for
predicting possible TS symmetries in a one-step nondegenerate
reaction from a particular reactant automer to a particular
product automer is the following.
1. Choose particular orientations of particular reactant and

product automers.
2. Determine the Pechukas groupsGR of the reactant and

GP of the product automers.
3. Find the Pechukas operations common to reactant and

product automers. These form a groupG0, the largest common
subgroup ofGR andGP. Let the subgroups ofG0 beG1, G2,
...,Gk.
4. Possible symmetries for the TS in a one-step reaction from

the chosen oriented reactant automer to the chosen oriented
product automer areGTS ) G0, G1, G2, ..., orGk.
5. Repeat in the same way with all other orientations of the

product automer to give further possible symmetries for the TS
from the chosen reactant automer to the chosen product automer.
Since only relative reactant and product orientations matter, it
is not necessary to consider other reactant orientations. All this
is not as onerous as it may appear since most additional oriented
product automers contribute no new TS possibilities. Pechukas
himself did not include this step. It is often not needed, but
we shall see cases where it is.
Return now to the ring opening of cyclobutene tos-cis-1,3-

butadiene shown with oriented automers of reactant and product
in Figure 1. For simplicity we assume the product to be planar,
contrary to the calculations of Bruelet, Lee, and Schaefer.14

Consequences of the actual nonplanar geometry will be con-
sidered in section V.
The point symmetry groups are identical for reactant and

product, but the Pechukas groups are not. Their largest common
subgroup is{E, (1,4)(2,3)(5,10)(6,9)(7,8)C2}, and the only
subgroup of this is{E}. Therefore, the Pechukas group of the
TS between these oriented automers, if the process is a one-
step reaction, must be one of the two.
Next, all possible orientations of the product automer must

be considered. In Figure 1, the product can be rotated by 180°
about thex or y axis, or by any angle about thez axis, to give
the result we already have.
All other product orientations have only the operator E in

common with the reactant, and hence predictC1 symmetry for
the TS.
Thus for the automers in Figure 1, the TS can have the

Pechukas symmetry group{E} or {E, (1,4)(2,3)(5,10)(6,9)(7,8)-
C2}. This treatment cannot predict which of these two sym-
metries the TS will have, but it does say with certainty that the
symmetry can be no other.
If one prefers to think in terms of the more familiar point

symmetry groups, the permutation operations may now be
dropped, and one can say the symmetry of the TS is eitherC2

) {E, C2} or C1 ) {E}. However, doing so does discard
information that may be useful. That is, more is known than
that if the TS hasC2 symmetry it has a 2-fold axis. Rotation
around that axis must interchange atoms 1 and 4, 2 and 3, ...,
7 and 8. These predictions are consistent with MP2/6-31G*
calculations that find a TS withC2 symmetry.15

(13) Balaban, A.; Farcasiu, D.J. Am. Chem. Soc. 1967, 89, 1958-1960.

(14) Breulet, J.; Lee, T. J.; Schaefer, H. F., IIIJ. Am. Chem. Soc. 1984,
106, 6250-6253.

(15) Baldwin, J. E.; Reddy, V. P.; Schaad, L. J.; Hess, B. A., Jr.J. Am.
Chem. Soc.1988, 110, 8555-8556.

Figure 1. The ring opening of cyclobutene to planars-cis-butadiene.
Automer numbering and Pechukas symmetry groups are shown.
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A similar analysis for the product as in Figure 1, but with H9

and H10 interchanged, predicts either aC1 or a Cs transition
structure. In the same way it is shown that the product of Figure
1 with H5 and H7 interchanged can be reached in a one-step
reaction only through aC1 transition structure.
It is seen that these symmetry predictions are of a different

nature than those from the Woodward-Hoffmann rules.16 In
the Woodward-Hoffmann treatment, symmetries are assumed
for reactant, product, and all geometries, including the TS, along
the reaction path. A correlation between reactant and product
orbitals is then constructed, and from this it is predicted whether
the reaction will be allowed (as for the conrotatory ring opening
above) or forbidden (the disrotatory ring opening). The
Pechukas analysis starts with the symmetry of reactant and
product only and predicts the possible symmetry of the TS. More
precisely, it states which symmetries of the nuclear framework
are not possible for the TS, leaving all others as possibilities. It
says nothing about relative activation energies for various
reactant or product automers.
II.4. Degenerate Case.The general procedure is as follows.
1. Follow steps 1-5 as in the nondegenerate case. Suppose

this gives the possibilitiesGTS ) G0, G1, G2, ..., Gk for the
Pechukas group of the TS, assuming the reaction nondegenerate.
2. SupposeG0

1, G0
2, ...,G0

R are groups of twice the order
ofG0 that containG0 as a subgroup;G1

1,G1
2, ...,G1

â are groups
of twice the order ofG1 with G1 as a subgroup; ... ...;Gk

1, Gk
2,

...,Gk
ω are groups twice the order ofGkwith Gk as a subgroup.

3. Then possible Pechukas symmetry groups of the TS are
any ofG0, G1, G2, ...,Gk; G0

1, G0
2, ...,G0

R; G1
1, G1

2, ...,G1
â;

... ...;Gk
1, Gk

2, ...,Gk
ω.

4. Further, the “extra” Pechukas operations inG0
1...Gk

ω that
are not common toGR andGP have the property that they turn
the reactant (product) automer into the product (reactant)
automer.
The Feist rearrangement17 of methylenecyclopropane by the

Doering and Roth pivot mechanism18 provides such an example.
One possible set of automers for reactant and product is shown
in Figure 2. Since the reaction is degenerate, reactant and
product must have the same point symmetry group,C2V in this
case. However, the two Pechukas groups have only the element
E in common. There are no permutation operations to drop
here so the largest common Pechukas subgroup corresponds to
the point symmetry groupC1 ) {E}. This is one possible
symmetry for the TS, but since the reaction is degenerate other
possibilities are any group that is double the order ofC1 (i.e.
any group of order 2) and containingC1 as a subgroup (all
groups do). ThusC2, Ci, andCs as well asC1 are possible
point symmetry groups for the TS. No other orientation of the
product gives additional symmetry possibilities.
A Cs symmetry is found by MP2/6-31G* calculations for this

TS, in agreement with these predictions.19,20 The “extra” σ
operation of the TS passes through C1 and the pivot C2H5H6

methylene and is associated with the permutation (3,4)(7,10)-
(8,9). As seen in Figure 2 (a, c, andd), the resulting Pechukas
operation does turn reactant into product, as required.

These results may be summarized in two rules, remembering
that all relative orientations of reactant and product automers
must be considered.
Rule 1. The Pechukas group of the TS in a one-step

nondegenerate reaction is either the largest common subgroup
of the reactant and product Pechukas groups, or any subgroup
of that.
Rule 2. The Pechukas group of the TS in a one-step

degenerate reaction is one of the groups from Rule 1 for
nondegenerate reactions, or any Pechukas group obtained from
any of these by adding extra symmetry elements to double the
group order.
Table 1 is arranged to simplify these TS symmetry predic-

tions. See footnotea for use of the table.

III. Derivation of the TS Symmetry Rule for Degenerate
Reactions

We first review, with additional comment on some points,
the main steps in Pechukas’ proof of Rule 1 since these are
necessary to the extension to Rule 2.
Consider anN-atom molecule in 3-dimensional space with

atomic Cartesian coordinatesx ) (x1, x2, x3; x4, x5, x6; ..., x3N)
wherex1, x2, x3 refer to atom 1, etc. LetV(x) be the potential
surface (i.e., the surface of total energy in a fixed-nuclear
calculation) in 3N+ 1 dimensions. Then the steepest-descents
lines ()gradient lines) are given by

where

in the denominator of eq 1 normalizes the step size so that

(16) Woodward, R. B.; Hoffmann, R.The ConserVation of Orbital
Symmetry; Verlag Chemie/Academic Press: Weinheim, 1970; pp 38-42.

(17) Feist, F.Chem. Ber. 1893, 26, 747-764.
(18) Doering, W. v. E.; Roth, H. D.Tetrahedron, 1970, 26, 2825-2835.
(19) Skancke, A.; Schaad, L. J.; Hess, B. A., Jr.J. Am. Chem. Soc.1988,

110, 5315-5316.
(20) Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma, K.

J. Am. Chem. Soc. 1991, 113, 3183-3184. It is mentioned in footnote 3 of
this paper that our MP2/6-31G* TS collapses to trimethylenemethane on
geometry optimization in a CASSCF calculation. This is certainly an
important observation, but does not affect our comments above that apply
specifically to the MP2/6-31G* potential surface.

Figure 2. Feist rearrangement of automera of methylenecyclopropane
to automerb. Structuresc andd show that the “extra” operationσ of
the Pechukas symmetry group of the transition structure does inter-
change reactant and product. See text for the definition ofσ.

dxi
ds

) -
∂V/∂xi
|∇V| ; i ) 1, 2, ..., 3N (1)

|∇V| ) [∑
i)1

3N

(∂V/∂xi)
2]1/2 (2)
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As Pechukas3 has pointed out, gradient lines are useful here
because they lead to relations between the symmetries of the
critical points they connect. Whether or not the reacting
molecule actually moves along the gradient line is not directly
relevant to these symmetry questions.
Eq 1 is almost analogous to the equations for the steepest

path down a hill on the (approximately flat) earth where the
hill height z and thex andy directions all have units of length.
The element of path length includes all three variables and is
[(dx)2 + (dy)2 + (dz)2]1/2. In eq 1 the variable analogous to
hill height has unit of energy instead of length as for the other
3N variables. Distance is therefore not defined in the (3N +
1)-space, and the element of path length is

in 3N rather than in (3N + 1)-space.
Equation 1 is a set of 3N first-order differential equations

with independent variablesand dependent variablesx1, ...,x3N,
but because of the additional constraint of eq 4 the usual proof21

of the uniqueness of solutions does not apply. However, if all
lines in eq 1 are divided by the last

These 3N- 1 first-order differential equations determine the
3N - 1 dependent variablesx1, ..., x3N-1 in terms of the
independentx3N, and hence determine a line in 3N-dimensional
space.
If all

are continuous in a regionRof 3N-space, then eq 5 has a unique
solution21 at all points in any closed rectangular regionR′ interior
toR. Consequently, the gradient lines in 3N-space determined
by eq 5 cannot cross in such anR′. These conditions are
sufficient, but not necessary, for the existence of unique
solutions. They appear weak enough to cover the cases of
interest on potential surfaces, but they are slightly stronger (i.e.,
more restrictive) than the more usual Lipschitz conditions.21Still
weaker conditions are known,22 but even they are only sufficient,
not necessary.
Since these gradient lines in 3N-space are projections of paths

on the surface ofV in (3N + 1)-space, the paths in (3N + 1)-

(21) Pennisi, L. L.Elements of Ordinary Differential Equations; Holt,
Rinehart and Winston: New York, 1972; Appendix 2.

(22) Coddington, E. A.; Levinson, N.Theory of Ordinary Differential
Equations; Krieger: Malabar, FL, 1987; p 49.

Table 1. Allowed Point Symmetry Groups for Transition
Structuresa

C1: none [C2, Cs, Ci]
C2: C1 [C4, S4, C2V, C2h, D2]
Cs: C1 [C2V, C2h]
Ci: C1 [C2h]
C3: C1 [C6, S6, C3V, C3h, D3]
C4: C1, C2 [C8, S8, D4, C4h, C4V]
S4: C1, C2, [ D2d, C4h]
C2V: C1, C2, Cs [D2h, D2d,C4V]
C2h: C1, C2, Cs, Ci, [D2h, C4h]
D2: C1, C2 [D2h, D2d, D4]
C5: C1 [C5h, C5V, D5]
C6: C1, C2, C3 [C6h, C6V, D6]
S6: C1, Ci, C3 [C6h, D3d]
C3V: C1, Cs, C3 [C6V, D3h, D3d]
C3h: C1, Cs, C3 [C6h, D3h]
D3: C1, C2, C3 [D3h, D3d, D6]
C7: C1 [none]
C8: C1, C2, C4 [D8]
S8: C1, C2, C4 [D4d]
D2h: C1, C2, Cs, Ci, C2h, C2V, D2 [D4h]
D2d: C1, C2, Cs, S4, D2, C2V [D4h]
D4: C1, C2, C4, D2 [D4h, D4d,D8]
C4h: C1, C2, Cs, Ci, C2h, C4, S4 [D4h]
C4V: C1, C2, Cs, C2V, C4 [D4h, D4d]
C5h: C1, Cs, C5 [D5h]
C5V: C1, Cs, C5 [D5h, D5d]
D5: C1, C2, C5 [D5h, D5d]
C6h: C1, C2, Cs, Ci, C3, C2h, C3h, S6, C6 [D6h]
C6V: C1, C2, Cs, C3, C2V, C3V, C6 [D6h, D6d]
D3h: C1, C2, Cs, C3, C2V, C3V, C3h, D3 [D6h]
D3d: C1, C2, Cs, Ci, C3, C2h, D3, C3V, S6 [D6h]
D6: C1,C2, C3, D2, D3, C6 [D6h, D6d]
T: C1, C2, C3, D2 [Td, Th,O]
D4h: C1, C2, Ci, Cs, D2, C2h, C2V, S4, C4, C4V, C4h, D4, D2d, D2h [D8h]
D4d: C1, C2, Cs, D2, C2V, C4, C4V, D4, S8 [D8h]
D8: C1, C2, C4, D2, C8, D4 [D8h]
D5h: C1, C2, Cs, C2V, C5, D5, C5V, C5h [none]
D5d: C1, C2, Cs, Ci, C2h, C5, D5, C5V [none]
D6h: C1, C2, Cs, Ci, C3, D2, C2h, C2V, D3, C3h, C3V, S6, C6, D2h,

D6, D3d, D3h, C6V, C6h [none]
D6d: C1, C2, Cs, C3, D2, C2V, S4, D3, C3V, C6, D2d, D6, C6V [none]
Td: C1, C2, Cs, C3, S4, C2V, D2, C3V, D2d, T [Oh]
Th: C1, C2, Cs, Ci, C3, D2, C2h, C2V, S6, D2h, T [Oh]
O: C1, C2, C3, D2, C4, D3, D4, T [Oh]
D8h: C1, C2, Cs, Ci, C4, S4, C2h, C2V, D2, D2h,D2d, D4, C4h, C4V,

C8, S8, D8, D4h, D4d [none]
Oh: C1, C2, Cs, Ci, C3, D2, C2h, C2V, S4, C4, D3, C3V, S6, C4V,

C4h, D4, D2d, D2h, D3d, T, D4h, Td, Th,O [none]
I: C1, C2, C3, D2, C5, D3, D5, T [Ih]
Ih: C1, C2, Cs, Ci, C3, D2, C2h, C2V, C5, C3V, D3, D2h, D5, C5V,

T, D3d, D5d, Th, I [none]
C∞V: C1, C2, Cs, C3, C4, C2V, C5, C6, C3V, C7, C8, C4V, C5V,

C6V [D∞h]
D∞h: C1, C2, Cs, Ci, C3, C4, S4, C2h, C2V, D2, C5, C6, S6, C3V,

C3h, D3, C7, C8, S8, D2h,D2d, D4, C4h, C4V, D5, C5V, C5h,
C6h, C6V, D3d, D3h, D6,
D4d, D4h, D5d, D5h, D6h, D6d, D8h, C∞V [none]

a The point symmetry groupG corresponding to the largest common
Pechukas group of reactant and product is shown before the colon.
These are arranged in increasing order for 49 common groups, including
the 32 crystallographic point groups. All subgroups ofG that are in
the set of 49 groups are between the colon and left square bracket.
The square brackets contain groups with twice the order ofG that have
G as a subgroup. For example, ifD2 corresponds to the largest common
subgroup of reactant and product in a nondegenerate reaction, then
possible symmetries for the TS areD2 or either of its subgroupsC1

andC2. If the reaction is degenerate additional possibilities are groups
in the square bracket forD2, i.e.,D2h, D2d, D4, and those in the square
brackets for the subgroupsC1 andC2, i.e.,C2, Cs, Ci, andC4, S4, C2V,
C2h,D2. The notation “[none]” means no group with required properties
is in the set of 49 groups.

∑
i)1

3N |dxids|2 ) 1 (3)

ds) [∑
i)1

3N

(dxi)
2]1/2 (4)

dx1
dx3N

)
∂V/∂x1
∂V/∂x3N

t f1

l

dx3N-1

dx3N
)
∂V/∂x3N-1

∂V/∂x3N
t f3N-1

1) 1 (5)

∂fi
∂xj

)
[( ∂V∂x3N) ∂

2V
∂xj∂xi

- (∂V∂xi) ∂
2V

∂xj∂x3N]
(∂V/∂x3N)

2
; i, j ) 1, 2, ..., 3N- 1

(6)
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space cannot cross except at crossings of their projections.
Conversely, sinceV is a single-valued function ofx1, ..., x3N,
the potential surface does not fold back on itself; and the lines
in 3N-space cannot cross unless those in (3N + 1)-space cross.
Thus there is a one-to-one correspondence between the crossings
of the paths in (3N + 1)-space and of their projections in 3N-
space.
The potential V becomes infinite wherever two nuclei

coincide. Here gradient lines may cross, but such points are
not met along ordinary reaction paths. The right sides of eq 6
will also become infinite at any point where∂V/∂x3N vanishes,
but this difficulty can be avoided by dividing eq 1 by some
line other than the last, except at critical points ofV (maxima,
minima, transition structures, etc.) where all∂V/∂xi, and hence
3V, vanish. For the moment we shall avoid consideration of
cases where two potential surfaces cross leading to gradient lines
that may not have a continuous slope. Consequently, on the
surfaces considered there is no crossing of gradient lines along
a reaction path except at critical points. We assume further
that quadratic terms dominate the power series expansion ofV
in the neighborhood of each transition structure so that the
Murrell-Laidler result12 holds, and hence only two gradient
lines descend from each TS.
Let R be any rotation, including an improper rotation

(reflection, inversion, rotatory reflection), of the molecule in
3-dimensional space. Let P be a permutation of identical atoms.
The set{PR} includes all operations in the Pechukas group of
the molecule. Both R and P also correspond to transformations
of a point in the 3N-dimensional molecular configuration space.
The following results from Pechukas3 and earlier papers will
be useful.
1. The operations R and P transform a point on the potential

surfaceV to another of equal energy. This is apparent since R
is an orthogonal transformation and therefore preserves angles
and distances; P interchanges only identical atoms.
2. If q is a gradient line onV, so are Rq and Pq.
3. Gradient lines terminate on critical points, and, excluding

these termini, symmetry is conserved along gradient lines.
Pechukas’ Rule 1 now follows quickly. By continuity of the

gradient lines and their derivatives, any symmetry of the line is
also a symmetry of the critical points at its ends. Consequently
any critical point must have at least all symmetry of all gradient
lines terminating on it. In particular, a TS must have at least
the symmetry of the two gradient lines,qa leading down to
reactant A andqb to product B (Figure 3). Consider a
nondegenerate reaction, and suppose the TS has an extra element
of symmetry PR not possessed by the gradient lineqa. Then
PRqa must be a gradient line, and it must terminate on the TS
since PR is a symmetry element of the TS. Therefore, either
PRqa ) qa or PRqa ) qb. The first is impossible since by
assumption PR is not a symmetry element of the entire lineqa.
The second is impossible since PR must turn each point onqa

to one of equal energy onqb, but reactant and product at the
ends of these lines are not of equal energy in most nondegenerate
reactions. One might imagine rare cases where reactant and
product are accidentally isoenergetic in a nondegenerate reaction,
but the fact that R preserves angles and lengths and P
interchanges only identical atoms prevents PR from transforming
reactant into product in such a case. Thus for a nondegenerate
reaction, the TS can have no symmetry element additional to
those of the gradient line down to reactant. Exactly the same
reasoning applies toqb, and leads to the conclusion that in a
nondegenerate reaction symmetry is conserved along all points
on a gradient line from reactant to product, excluding reactant
and product themselves but including the TS. Reactant and
product might have more symmetry than this gradient line, but
they cannot have less. Hence the TS can have only symmetry
operations that are shared by reactant and product, and hence
Rule 1 for nondegenerate reactions.
There are also gradient lines down to the TS from higher

energies. Any symmetry along these lines will be brought to
the TS, but, since these gradient lines and those coming up to
the TS from lower energies cannot be interconverted by any
PR, they can add no symmetry elements to TS in addition to
those already allowed by Rule 1.
The degenerate reaction differs from the nondegenerate in

that in the former the two paths are isoenergetic and so might
be interchanged by some Pechukas operation. This might be
imagined to occur by pathsqa and qb each having certain
Pechukas operations not common to the other. Such operations
of qamight turnqb into qa while those ofqb turnqa into qb. All
symmetry operations ofqa andqb would, of course, also belong
to the TS. It will be shown that this is not the case. Instead,
qa and qb have identical Pechukas groups just as in the
nondegenerate case, and the extra symmetry operations of the
TS which interchangeqa and qb belong to it alone (or more
precisely, not to any downward gradient path from the TS).
Suppose for a degenerate reaction

where Xi ) PiRi, is the Pechukas group ofqa, excluding its end
points A and TS which both have at least this much symmetry.
Let

be the Pechukas group of the TS so that

is the set, perhaps empty, of “extra” Pechukas symmetry
elements of the TS. Since these turn a gradient path down from
the TS into an isoenergetic path also starting at the TS and since
Y j ∉ G0, it must be that

while

Next suppose thatG0 is not the Pechukas group ofqb. Then it
must follow that at least for some Xi

and since Xi-1 is a member ofG0

Figure 3. Gradient path for a one-step () concerted) mechanism.

G0 ) {X1, X2, ..., Xn} (7)

GTS ) G0 + K ) {X1, X2, ..., Xn; Y1, ..., Ym} (8)

K ) {Y1, ..., Ym} (9)

Y jqa) qb j ) 1,2, ...,m (10)

X iqa ) qa i)1,2, ...,n (11)

X iqb ) qa
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or

which is contrary to the definition ofG0. Hence

andG0 is the Pechukas group of bothqb andqa.
In a similar way Yj-1 is a member ofGTS, and it must be

that

since otherwise

which is contrary to eq 10. Hence Yj-1 belongs toK . Then
using eq 13

so that

and the “extra” operations inK do interchangeqa andqb.
Next consider the products XiX j, XiY j, YjX i, and YiY j. All

belong toGTS because of the closure property, and for the same
reason XiX j belongs toG0. To show that XiY j ∈ K , multiply
eq 10 by Xi and use eq 12

In the same way, multiplication of eq 12 by Yj, and use of eq
10 shows also that YjX i ∈ K . Again, multiply eq 10 by Yi and
use eq 14

to show that YiY j ∈ G0. In summary

Finally, multiply GTS on the right by Yj

By the rearrangement theorem which says that multiplication
of all members of a group by any particular member gives back
the group in a perhaps rearranged order, each of the elements
in this set is distinct and each is a member ofGTS. By eq 17,
each member ofG0 is turned into a member ofK , and each
member ofK into a member ofG0 by this postmultiplication
by Yj. Thusm ) n, and any allowed group for the TS in a
degenerate reaction that contains symmetry operations that are
not shared by reactant and product must be twice the order of
one of the groups allowed by Rule 1 and must contain that group
as a subgroup. Hence Rule 2 holds for transition structure
symmetries in one-step degenerate reactions.

Since the set of all elements common to any two groupsG1

andG2 (i.e., G1 ∩ G2) is itself easily shown to be a group,
Rule 1 can alternatively be stated: “The symmetry group of
the TS in a one-step nondegenerate reaction is one of the
subgroups common to the reactant and product Pechukas
groups.”

IV. Discussion

IV.1. The Problem of Rotation. Because the energy of a
molecule is unchanged by rotation or translation, each gradient
path in 3N-space has associated with it a 6-fold infinity of
equivalent paths. Along each of these, symmetry is preserved.
If symmetry elements are defined relative to the three Cartesian
axes of laboratory space (e.g., a 3-fold rotation around thez
axis, or a reflection in thexy plane), then it is clear that the
symmetry elements may vary from one equivalent path to
another. Since the derivation of Rules 1 and 2 made use of the
symmetry conservation along a gradient path, to apply these
rules one must imagine the reaction carried out without sliding
from one equivalent path to another, that is, without overall
rotation or translation of the reacting molecule.
Holding the center of mass fixed in the laboratory space

prevents translations, but since the molecule is not rigid, it is
not always easy to see how to avoid rotation. The permutation
operators attached in the Pechukas group to the point symmetry
elements help to overcome this problem. As the molecule is
transformed from reactant to product, symmetry elements of
the reactant may disappear and new ones appear for the product.
It is necessary to know whether a particularC2 axis (say) in
the product is the same as one in the reactant. For example, in
the conrotatory ring opening of cyclobutene in Figure 1, the
rotation of the two CH2 groups makes an overall rotation (i.e.,
a motion requiring an external torque) about an axis through
the C2dC3 and C1-C4 bonds. To cancel this, the entire
molecule must be rotated in the opposite direction. Thus the
σv plane of the reactant is different from that of the product;
but since the former permutes atoms 5 and 9 while the latter
permutes 5 and 10, the permutations of the Pechukas symmetry
elements make it clear that these two operations are different
even without considering overall rotation of the molecule.
However, these permutation operators alone are not always

sufficient, as thecis-transisomerization of ethylene by rotation
about the CdC bond shows. Start with ethylene lying in the
xy plane asa in Figure 4. If the C2H5H6 group is rotated
clockwise by 90° and the C1H3H4 group counterclockwise by
90°, the rotations about the CdC bond cancel, and the resulting
Berry pseudorotation23 gives the productb in thexzplane shown
in Figure 4. There is a reflection plane in both reactant and
product that induces the permutation (3,4)(5,6), but they are
not the same plane. Thus the two Pechukas operations are not
identical. The largest common Pechukas group of reactanta
and productb in Figure 4, taking account of spatial orientation
of a, b, and all symmetry elements, is{E, (3,4)(5,6)C2x,
(1,2)(3,5)(4,6)C2y, (1,2)(3,6)(4,5)C2z} which is isomorphic with
the point groupD2 containing (see Table 1) subgroupsC1 and
C2. These are possible TS symmetries. Doubling the order of
these gives (again, see Table 1) the additional possible sym-
metries: C1f [C2, Cs, Ci]; C2 f [C4, S4, C2V, C2h, D2]; D2 f
[D2h, D2d, D4]. Thus 12 point symmetry groups are possible
for the TS of this reaction. Note, however, that theC2 group
arises in two ways that correspond to different Pechukas
groups: first, as a subgroup of the largest common subgroup
of reactant and product Pechukas groups so that the C2 operation

(23) Berry, R. S.J. Chem. Phys.1960, 32, 933-938.

X i
-1X iqb ) X i

-1qa

X i
-1qa ) qb

X iqb ) qb (12)

Y j
-1qa ) qb (13)

Y j
-1qa ) qa

Y jY j
-11qa ) qa ) Y jqa

Y jY j
-1qa ) Y jqb

Y jqb ) qa (14)

X iY jqa ) X iqb ) qb (15)

Y iY jqa ) Y iqb ) qa (16)

(X iY j and YjX i ∈ K ) and (XiX j and YiY j ∈ G0) (17)

GTSY j ) G0Y j + KY j ) {X1Y j, ..., XnY j; Y1Y j, ..., YmY j}
(18)
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must be one of the 2-fold rotations with associated atom
permutations in that group. Second,C2 may arise by doubling
the common subgroupC1. In this case the atom permutations
associated with the 2-fold rotation are not specified. Similar
remarks apply to theD2 symmetry.
If instead the C2H5H6 group is rotated by 180° while holding

the C1H3H4 group fixed, the isomerized product is in thexy
plane (c Figure 4). The largest common Pechukas group of
this reactant and product is{E, (3,4)(5,6)C2x, σxy, (3,4)(5,6)σxz}
which is isomorphic with the point groupC2V containing
subgroupsC1, C2, andCs. From Table 1 additional possible
TS symmetries are:C1 f [C2, Cs, Ci]; C2 f [C4, S4, C2V, C2h,
D2]; Cs f [C2V, C2h]; C2V f [D2h, D2d, C4V].
The TS symmetry predictions given by orientationsb andc

in Figure 4 differ in that the first allowsD4 while the second
allowsC4V. ThisC4V possibility is excluded by the following
reasoning. The largest common Pechukas subgroup ofa andc
is isomorphic withC2V and contains the operationσxy. Should
the actual TS be of this symmetry or of symmetry gotten by
doubling the order of this group (i.e.,D2h, D2d, or C4V), the
symmetry operationσxymust be preserved all along the gradient
path. Since this operation interchanges no atoms, the molecule
must remain planar. In the same way, the operation (3,4)(5,6)σxz
must also be preserved. This requires that atoms 5 and 6 move
symmetrically with respect to thexzplane. They must therefore
meet on thex axis and pass through each other. Such infinite-
energy paths are of no practical interest and so must be excluded.
It is true that aC2V TS structure is also possible for patha to b
(Figure 4), but this occurs by doubling the common subgroup
C2 so that the exact symmetry planes are not specified, and
neither aC2V nor aD2d (which does not arise fromC2V for this
path) TS causes difficulties.
It might seem more natural to attach the point symmetry

elements to molecule-fixed rather than laboratory-fixed coor-
dinates. After all, there is nothing to prevent the actual reacting
system from translating and rotating. The difficulty is that we

see no way to be sure that a symmetry plane, for example, that
permutes certain atoms in the reactant and another that permutes
the same atoms in the product is actually the same plane and is
conserved along the reaction path. For example,a and b in
Figure 4 both have some reflection plane that permutes no atoms
and another that exchanges atoms 3 and 4, and 5 and 6.
Similarly, they both have threeC2 axes that cause the same
permutations in reactant and product. It might then be said that
the Pechukas groups ofa andb have 6 elements (E, threeC2

axes and 2 reflection planes) in common. This is impossible
since the set of all elements common to two groups forms a
subgroup of both, and hence its order must be an integer divisor
of the order of both groups, but 6 is not an integer divisor of 8.
The example of Figure 4 is a degenerate reaction, but the

same problem can occur in nondegenerate cases. Replace H4

and H6 in this figure by Cl atoms, and consider the resulting
cis-trans isomerization of 1,2-dichloroethylene. The resulting
modified structuresa andb then have{E, (1,2)(3,5)(4,6)C2y}
as the largest common subgroup while modifieda andc have
{E, σxy}.
Since in Figure 4 one can go froma to b by a Berry

pseudorotation, i.e., by vibration of the two halves of the
molecule moving against each other with no external torque,
while c can be reached froma by rotating the right methylene
group, which would require an external torque, we can exclude
the product orientationc in this case. In fact, any degenerate
reaction, except the interconversion of enantiomers, along a
gradient path with no external force or torque must be
describable as a Berry pseudorotation. The case of enantiomer
interconversion is excluded since reactant and product, although
of equal energy, are distinguishable.
It is further true that the extra TS symmetry allowed byc is

shown to be impossible because it requires motion of atoms
through each other. However, we do not see, in general, any
way to choose a unique orientation of product, or even to
recognize those orientations that cannot be reached without

Figure 4. Pechukas groups for the rearrangement of the automera of ethylene to two orientations (b andc) of the product automer.
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rotation of the system as a whole. The only safe procedure
appears to be to choose some spatial orientation of reactant (or
product) and then to examine all relative orientations of product
(or reactant). All distinct TS symmetry predictions from all
orientations are then possible TS symmetries unless they can
be excluded by further considerations. For the ethylene example
of Figure 4, we have found no further TS symmetries not
allowed byproduct orientationsb andc.
IV.2. Comparison with the Use of Longuet-Higgins

Groups. In 1963 Longuet-Higgins24 introduced the group
consisting of all “feasible” permutations in the molecule plus
all “feasible” inversions of permuted configurations. A “fea-
sible” permutation is one obtainable under the conditions of
the experiment considered during the time of the experiment.
Longuet-Higgins called this group the “molecular symmetry
group”, but we shall follow others including Balaban and
Brocas25 and use the name, “Longuet-Higgins group”. Although
this group was developed to understand the spectra of nonrigid
molecules, it can be applied to rigid molecules as well where it
and the point symmetry group are isomorphic.
Consider again the reactiona to b in Figure 4. The Longuet-

Higgins symmetry operators for botha andb are

This group is isomorphic to theD2h point group, and using Table
1 as above this gives all the 13 possibilities for TS symmetry
predicted by the Pechukas group above for orientationsa and
c and the two additional possibilitiesD4h andC4h. Since the
Longuet-Higgins group contains no information about spatial
orientation of reactant or product, it predicts the same TS
symmetries for the reactiona to c as fora andb.
Again, because of the lack of spatial information in the

Longuet-Higgins group, it is not surprising that its predictions

are less restrictive than those of the Pechukas group. It is only
surprising that the difference is as small as it is with 15 possible
TS symmetries predicted by the Longuet-Higgins group and 13
by the Pechukas group.
The Longuet-Higgins group avoids the troublesome problem

of relative orientation of reactant and product. On the other
hand, the Pechukas group is more selective and the isomorphism
with the familiar point group is more immediately obvious.

V. Further Examples

All of the examples below, like the two above, are uni-
molecular rearrangements. Multimolecular steps may also be
treated with the additional complication of considering various
relative orientations of the reactant and of the product compo-
nents.3

V.1. The Ring Opening of Cyclobutene.We return to the
cyclobutene ring opening discussed in section II.3. This
proceeded from cyclobutene withC2V symmetry to planarC2V
s-cis-butadiene through aCs transition structure. However, the
C2V butadiene is actually not an energy minimum, but rather a
transition structure between two enantiomeric forms of gauche
butadiene, each withC2 symmetry. When the gradient along
the C1-C4 bond lengthening, C1-C2 bond shortening, etc.,
direction reaches a minimum, it meets a pair of downward
gradients in an orthogonal direction (rotation of the terminal
methylene groups about the central C1-C3 bond) that lead to
the gauche products. These points on the potential surface are
sketched in Figure 5 where, for clarity, the scale is distorted.
None of this affects our previous prediction of the symmetry

of the TS between cyclobutene ands-cis-butadiene since our
reasoning required only that we consider a TS between, and
higher in energy than, two points where all first derivatives
vanish, as they do at transition structures as well as at minima.
However, the question of whether this newC2V TS has proper
symmetry to mediate the reaction between the two gauche forms
of butadiene should be considered. These gauche forms have
identical Pechukas groups which are isomorphic toC2.
The reaction is degenerate, and Table 1 shows the observed

C2V TS symmetry to be in the allowed list (C1, C2, Cs, Ci, C2V,
C2h, C4, S4, D4) of possibilities.

(24) Longuet-Higgins, H. C.Mol. Phys.1963, 6, 445-460.
(25) Balaban, A. T.; Brocas, J.J. Mol. Struct. (THEOCHEM)1989, 185,

139-153.

Figure 5. Sketch of the potential surface showing the ring opening of cyclobutene to gauche butadiene. TheC2V transition structure here is the
planars-cis-butadiene shown in Figure 1.

E E*
(3,4)(5,6) [(3,4)(5,6)]*

(1,2)(3,5)(4,6) [(1,2)(3,5)(4,6)]*
(1,2)(3,6)(4,5) [(1,2)(3,6)(4,5)]* (19)
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Situations such as this where the gradient path from one TS
falls to another TS are probably not uncommon. The gradient
path for the Diels-Alder endo addition ofs-cis-butadiene to
cyclopropene has been followed at the STO-3G level,4 and is
like Figure 5. The gauche butadiene flattens to the sameC2V
TS as in Figure 5 which then adds to cyclopropene to give aCs

transition structure.
The last part of the computed gradient path for the combina-

tion of silene and ethylene to form silacyclobutane is another
example.26 Silene and ethylene first react to form a trans
diradical which then rises to aCs TS. This in turn falls to a
C2V TS in the degenerate interchange of an enantiomeric pair
of puckered silacyclobutene rings. In this example, the sym-
metry rules were a considerable practical aid in connecting the
various stationary points on the potential surface.
It is a minor point of nomenclature that, if one follows a

gradient path such as above down from the first to the second
TS, and then down to product, it might be said that the reaction
path has bifurcated to two products. It seems to us clearer to
say that the original gradient path reaches its minimum at the
second TS from which it begins to rise. At the second TS two
other gradient paths go down to product.
V.2. The [1,5]-Sigmatropic Hydrogen Shift in cis-1,3-

Pentadiene. In 1982 Kwart and his colleagues27 proposed a
C2V transition structure in the degenerate concerted hydrogen
shift reaction shown in Figure 6. This TS was later shown by
computation to haveCs symmetry instead.28-30

It will be shown now that with the rules above, theC2V TS
can be excluded without computation. Figure 6 lists the
Pechukas groups of reactant and product in this reaction. The
largest common subgroup is isomorphic withC1. No other
relative orientation of reactant and product automers give
additional symmetry; nor do any other pair of automers with a
single hydrogen transferred from the methyl to the methylene
group. Table 1 shows that the only possibilities for the TS
symmetry in this degenerate reaction areC1, C2, Cs (as
calculated),Ci. C2V is not a possibility.
V.3. Rearrangement of PF5 by Berry Pseudorotation.

The rearrangement of the phosphorus pentahalides by the
pseudorotation mechanism proposed by Berry23 in 1960 is an
interesting example where the obvious relative orientation of
automers does not give the correct symmetry prediction.
Suppose the automera of PF5 shown in Figure 7 is rearranged
to automerb. It seems natural, if one imagines not knowing
the Berry mechanism, to align the two automers so theC3 axes

coincide as inb. With this relative orientationa andb share
only the two underlined Pechukas operations E and (1,4)(3,6)-
C2

2. From Table 1, nine possible symmetries for the TS are
thenC1, C2, Cs, Ci, C4, S4, C2V, C2h, andD2.
However if the automer inb Figure 7 is rotated around the

P-F2 bond until F3 and F6 are in theσh plane ofa, c is obtained.
The largest Pechukas group common toa andc then consists
of the four operations underlined in the Pechukas group ofc
and is isomorphic with the point groupC2V. This adds, using
Table 1, the three additional possibilitiesD2h, D2d, andC4V for
the TS symmetry. There is also an orientation of the product
automer in which the P-F4 bond lies along the original C22

axis and in which F3-P-F6 is in the σh plane. This has a
Pechukas group isomorphic withCs in common witha, but it
adds no new possibilities for the TS symmetry.
Since the Berry pseudorotation mechanism and theC4V TS

are already known, automer orientationc in Figure 7 would
probably be one’s first choice. Of course, if the TS is known,
there is no point in predicting its possible symmetry. Our
purpose was to show that had the TS not been known, the
methods here would correctly have predicted aC4V structure as
a possibility. Although 37 of the 49 symmetries in Table 1 are
rigorously eliminated in this case, 12 still remain. Further
techniques that eliminate six more possibilities, still leavingC4V,
have been developed by Bytautas.31 Their application requires
a little more effort than the methods here, and their results cannot
be summarized as in Table 1.
V. 4. The Bond-Shift Rearrangement in Cycloocta-

tetraene. By the methods above, Table 1 gives the 15
possibilities,D4h, D2d, C4h, C4V, D2h, D4, S4, C2V, D2, C2h, C4,
C2,Cs,Ci, andC1, for TS symmetry in a one-step ring inversion
(1 to 2 or 3 to 4, Figure 8) of cyclooctatetraene where reactant
and product have identical Pechukas groups isomorphic with
D2d. In the same way, the largest Pechukas group common to
reactant and product for a one-step bond-shift rearrangement
(1 or 2 to 3 or 4, Figure 8) is isomorphic withS4, and there are
11 possible TS symmetries,S4, D2d, C4h, C2V, C2h, D2, C4, C2,
Cs, Ci, andC1. These do not include the planarD8h structure
that might perhaps be expected.
In 1992 Hrovat and Borden32 published CASSCF results

demonstrating the three-step mechanism shown in Figure 8

(26) Schaad, L. J.; Skancke, P. N.J. Phys. Chem.1997, 101, 7408-
7413.

(27) Kwart, H.; Brechbiel, M. W.; Acheson, R. M.; Ward, D. C.J. Am.
Chem. Soc.1982, 104,4671-4672.

(28) Hess, B. A., Jr.; Schaad, L. J.J. Am. Chem. Soc.1983, 105, 7185-
7186.

(29) Rondan, N. G.; Houk, K. N.Tetrahedron Lett.1984,2519-22.
(30) Hess, B. A., Jr.; Schaad, L. J.; Pancir, J.J. Am. Chem. Soc.1985,

107, 149-154.

(31) Bytautas, L. Ph.D. Dissertation, Vanderbilt University, Nashville,
TN, 1996. To be published.

(32) Hrovat, D. A.; Borden, W. T. J.J. Am. Chem. Soc.1992, 114, 5879-
5881.

Figure 6. The hydrogen shift in 1,3-pentadiene.

Figure 7. The Berry pseudorotation rearrangement of PF5 from automer
a. The Pechukas operations underlined for the two orientationsb and
c of the same product automer are those common with the Pechukas
group of the reactant automera.

Symmetry Rules for Transition Structures J. Am. Chem. Soc., Vol. 120, No. 7, 19981579



where all structures are singlets. The first step is a ring inversion
between1 and 2 or 3 and 4 with calculatedD4h transition
structures5 and6 as allowed above. Transition structures5
and6 also have identical Pechukas groups, and Table 1 shows
D8h to be an allowed symmetry for TS7 connecting them. The
bond-shift reaction as followed along gradient paths is thus a
three-step process: up from1 or 2 to TS5, then up again to TS
7 and down to TS6, then down to the bond-shifted products3
and4.

However, the reacting molecule may not follow a gradient
reaction path.32 If the descending gradient line from7 goes
along the floor of a valley whose sides become less and less
steep so that the descending valley becomes a descending ridge,
the gradient becomes unstable and the molecule will fall from

the ridge along a gradient extremal as defined by Ruedenberg33

in his extensive study of the ring opening of cyclopropylidene
to allene. In this case, cyclooctatetraene will bypass TS5 on
the way to structures1 or 2. Consequently, what we have called
a three-step reaction for bond shifting by following the gradient
through three transition structures, might equally well be
considered a one-step reaction if transition structures5 and6
are avoided. This emphasizes Pechukas’ point3 that gradient
lines are useful here not because the actual reaction must always
move along gradient, but because the symmetry conservation
along gradients imposes symmetry constraints on critical points
connected by gradients. The symmetry rules are therefore
helpful in mapping the potential surface whether the actual
reaction path follows gradient lines.
The mechanism calculated by Hrovat and Borden has been

strengthened by the spectroscopic observation of theirD4h

transition structure.34,35 They also give an estimate of 12( 1
kcal/mol for the antiaromatic destabilization of planar cyclo-
octatetrene. This is in fair agreement with the simple Hu¨ckel
result, using a Dewar reference, of 15.7 kcal/mol.36,37
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Figure 8. Sketch of the potential surface showing the ring-inversion
(1 to 2 or 3 to 4) and the bond shift (1 or 2 to 3 or 4) automerization
of cyclooctatetraene as calculated by Hrovat and Borden.32
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